

PROGRAMME DE COOPÉRATION TRANSFRONTALIÈRE

GRENSOVERSCHRIJDEND SAMENWERKINKSPROGRAMMA

Alt Ctrl Trans

Alternatives au chrome dur : Quelles technologies pour quelles propriétés?

Prof. Véronique Vitry Service de métallurgie UMONS

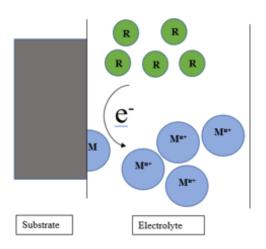
- Les dépôts de chrome dur (hexavalents) sont des technologies passe-partout pour de nombreuses applications en raison de :
 - Une bonne résistance à la corrosion
 - Une excellente résistance à l'usure
 - Une dureté élevée
 - Un coût raisonnable
- Ces revêtements sont soumis à la législation environnementale
- Les traitements alternatifs ne répondent pas forcément à toutes les demandes des utilisateurs (ex : HVOF)

Alt Ctrl Trans

Objectifs

- Accroître la sensibilisation à la législation sur le chrome hexavalent
- Collaborer avec les industriels pour déterminer les caractéristiques requises pour les traitements alternatifs
- Développer trois revêtements alternatifs :
 - Revêtements nickel-bore chimiques
 - dépôts électrolytiques de chrome (trivalent) et d'alliages métalliques
 - Plasma d'arc transféré
- Diffuser les résultats de la recherche via des formations, workshops, séminaires et transferts de technologie,

Partners


- Université de Mons
- Materia Nova
- Centre Régional d'Innovation et de Transfert de Technologie – Matériaux Dépôts et Traitement de surface (CRITT-MDTS)
- FOREM
- ENSAM Campus de Lille
- Université de Lille
- Sirris
- VOM

Dépôts chimiques de nickel-bore

Principe des dépôts de nickel chimique

Réducteur = forme oxydée du réducteur + $ne^ M^{+n} + ne^- = M^{\circ}$

- ✓ Pas de source de courant externe
- Tout substrats
- Dépôts uniformes
- Haute dureté
- ✓ Résistance supérieure à la corrosion et à l'usure

Types de dépôts de nickel chimique

Nickel pur

Dépôts
composites

Alliages
binaires

Alliages
ternaires

NiP avec NaH₂PO₂

NiB avec NaBH₄ ou DMAB

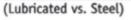
- Ni-B-Pb ou Ni-B-Tl (stabilisant)
- B: 0.5 9 % en masse

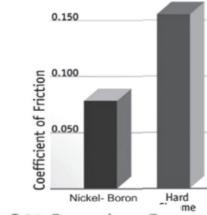
Composants des bains

Source d'ions métalliques

Réducteur

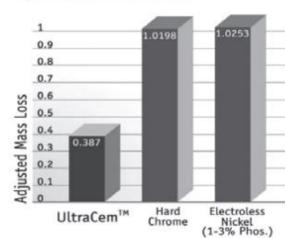
Agent complexant

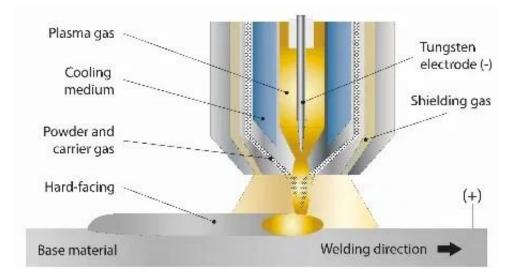

Stabilisant


Ajusteur de pH

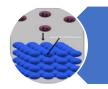
Autres (surfactants, accélérateurs, ...)

Propriétés (1)




ASTM G65 Procedure B

Dry Sand/Rubber Wheel Test

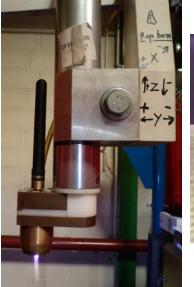


PTA: Plasma d'arc transféré

Avantages

Liaison métallique

Homogénéité


Résistance

Reproductibilité

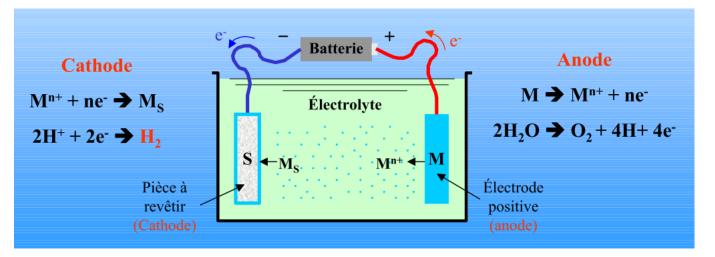
Fiabilité des processus

Premier arc: arc pilote

Deuxième arc : arc transféré

Applications

- Revêtement dur
- revêtements résistants à la corrosion
- Composants industriels


 (aubes de turbine, arbres,
 roulements de moteurs, etc.)
- Tous les matériaux métalliques peuvent être revêtus

Dépôts électrolytiques de nickel et d'alliages

Application d'un courant électrique entre 2 électrodes dans une solution électrolytique :

- ☐ Réduction à la cathode
- ☐ Oxydation à l'anode

L'anode n'est pas forcément le métal à déposer: celui-ci peut être présent sous forme de sels métalliques

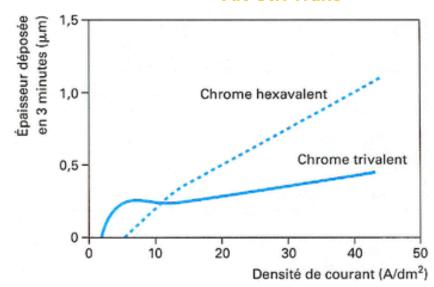
Avantages de la technique

- ☐ Grande variété de dépôts possibles:
 - ✓ Métaux (Ni, ...)
 - ✓ Alliages (ZnNi, NiW, NiFe, ...)
 - ✓ Composites (Ni+ SiC)
- ☐ Grande variété de processus:
 - ✓ Racks/ supports
 - ✓ Tonneau
 - ✓ Reel to reel
 - √ Sélectif (Pad-plating)
- ☐ Épaisseur variable (→ électroformage)
- ☐ Économie/Fiabilité des processus

Dépôts électrolytiques à base de Chrome (III)

Alt Ctrl Trans

Conditions de travail


- Travail de la température ambiante à 50 °C
- Densité de courant typique: 5 à 16 Adm⁻²
- Utilisé pour des substrats en acier, Al, Cu, Zn et alliages de fonderie.
- Possible sur les polymères préalablement revêtus par traitement chimique
- Bonne alternative pour les applications décoratives

Avantages

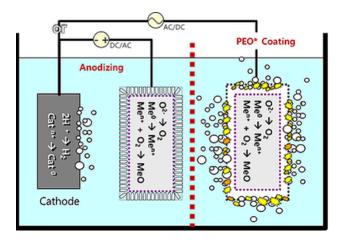
- Similaire au chromage dur classique en termes de matériau
- Pouvoir nivellant élevé
- Diminution des coûts de traitement des déchets
- Absence de chrome hexavalent
- Moins sensible aux interruptions de courant

Désavantages

- Densité de courant limitée
- Sensibilité aux pollutions métalliques
- Propriétés modifiées

limites de tolérances de ces bains :

Ni : 500 mg/L, Cr(VI) et Cu : 30


mg/L, Zn: 100 mg/L, Fe: 30 mg/L.

Oxydation micro-arcs (OMA)

- Principe similaire à l'anodisation: le substrat est immergé dans un électrolyte et polarisé anodiquement.
- Mais potentiel plus élevé (au moins 200 V pour Al) pour atteindre la tension de claquage du film et créer des décharges dans l'électrolyte.
- Formation localisée de plasmas → température et pression élevée qui modifient l'oxyde durant sa croissance (fusion de l'oxyde) menant à une cristallisation partielle et des couches plus dures.
- Pour acier, Al, Mg, Ti, Zr

Propriétés

- Haute résistance à l'usure
- Résistance supérieure à la corrosion
- Résistance à la chaleur
- Isolation thermique et électrique
- Bonne adhérence
- Porosité interne élevée

Alt Ctrl Trans

Substrat	Composan t majeur	Epaisseur typique (μm)	Applications
Al	γ-ΑΙ2Ο3	50-100	Industrie aérospatiale (corps de vannes/actionneurs)
Al-Si	Mullite	100-150	Moteurs automobiles (pistons/chemises de cylindres)
AA7075	α -Al2O3	15-60	Industrie aérospatiale
Al-Mg	γ-ΑΙ2Ο3	60-120	Industrie du gaz et du pétrole (joints et bagues)
Al	γ-ΑΙ2Ο3	30-80	Fabrication d'outils (coupe/affûtage)
Allliages à haute résistance	α -Al2O3	100-150	Transformation textile (rotors/rouleaux)

Revêtements PVD et CVD

Interreg France-Wallonie-Vlaanderen UNION EUROPÉENNE EUROPÉENNE EUROPÉENNE

Rugosité

(µm)

0.01

0.017

0.016

0.155

0.167 0.164

0.005

0.011

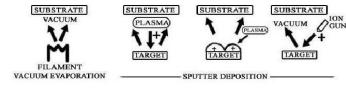
0.214

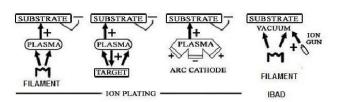
0.467

0.56

Principes généraux

• PVD


- Condensation d'une vapeur métallique dans un gaz raréfié inerte.
- La vapeur est produite par évaporation thermique ou par faisceau de haute énergie ou par pulvérisation cathodique.


CVD

- Réaction du gaz précurseur avec une surface chaude pour former des composés stables.
- Divers procédés : atmosphérique, basse pression, assisté par plasma, parois chaudes/froides

Principales applications

- Résistance à la corrosion et à l'usure
- Esthétique
- Propriétés optiques

CVD

Le substrat peut

être détérioré

Température du

substrat 900-

1100 °C

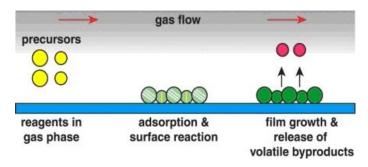
6-9 µm

PVD

Pas de

détérioration du

substrat


Température du

substrat <400-

600°C

1-3 μm

Alt Ctrl Trans

Dureté

(Gpa)

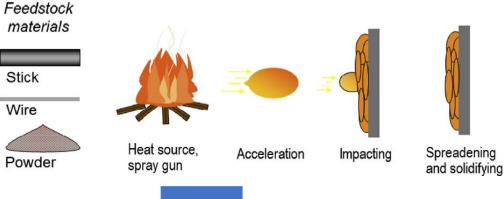
	_
-	2.8
CrN	26.2
Cr ₂ N	27.3
-	3.8
MoS ₂	6.8
CrN	14
-	8.4
CrN	18
-	8
CrN	19
DLC	14
-	1.9
TiSiCN	30
	Cr ₂ N - MoS ₂ CrN - CrN - CrN - CrN

Revêtement

Substrat

Projection thermique

Principes généraux

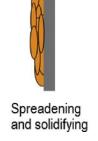

- Le matériau projeté est chauffé dans un environnement gazeux
- Les gouttes fondues sont projetées à haute vitesse vers le substrat
- Solidification rapide des gouttes lors de l'impact
- Matériau sous forme de poudres, fils, ...
- Adapté aux métaux, céramiques et polymères

Paramètres importants

- Nature et composition des matières premières
- Méthode de production de matières premières
- Propriétés des matières premières: taille des particules, distribution granulométrique
- Méthode de pulvérisation thermique
- Post-traitement
- Paramètres cinématiques
- État du substrat

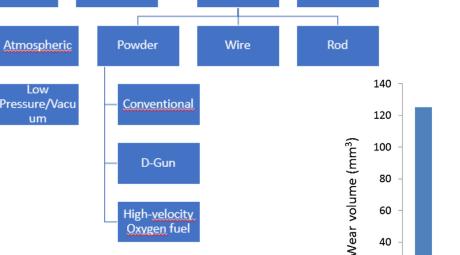
Procédés

Plasma


Thermal spray

High-velocity

Oxygen fuel


Wire arc

Applications

- Résistance à l'usure
- Résistance à la corrosion
- Barrière thermique
- Vitesse de dépôt élevée

Flame

Kinetic

Propriétés de diverses technologies alternatives au chromage dur hexavalent

Propriétés de base

Propriété	Épaisseur (μm)	Rugosité (Ra) (μm)	Structure	Dureté de surface (hv50)	Dureté en coupe (hk 50)	Dureté de nanoindentation	Module élastique
Revêtement		,		,	, , ,	(GPa)	(Gpa)
Chrome dur (épais)	50 (hétérogène)	1.2	Amorphe	1050		11.7 ± 1.8	
Chrome dur (mince)	10	0.92	Amorphe			11 ± 2	
ENB-Pb	25	0.30	Amorphe	896 ± 57	892 ± 87	11.5 ± 0.7	185 ± 10
ENB	14	0.28	Amorphe	933 ± 62	886 ± 30	11.6 ± 0.3	201 ± 10
ENB HT	14	0.28	Cristallin	1277 ± 181	1196 ± 120	16 ± 3	277 ± 44
NiW électrolytique	10		Nanocristallin	650-700			
Cr ⁺³ coating (1)				600-900		8.5-10.5	
OMA (2)	1-50	2-8	Cristallin ou amorphe	900-2000		21-23	~300
PVD-CVD (3)	1-10	0.01-0.6	Cristallin			25-30	100-400
Projection thermique (4)	50-5000			20-72 (HRC) 700-1500 (HV0.3)			

^{1.} liu, B.; Zeng, Z.; Lin, Y. Mechanical properties of hard Cr-MWNT composite coatings. Surf. Coatings Technol. 2009, 203, 3610–3613, doi:10.1016/j.surfcoat.2009.05.035

^{2.} Huang, X. Plasma Electrolytic Oxidation Coatings on Aluminum Alloys: Microstructures, Properties, and Applications. Mod. Concepts Mater. Sci. 2019, 2, doi:10.33552/mcms.2019.02.000526

^{3.} Q. M. Mehran, M. A. Fazal, A. R. Bushroa & Saeed Rubaiee (2017): A Critical Review on Physical Vapor Deposition Coatings Applied on Different Engine Components, Critical Reviews in Solid State and Materials Sciences, DOI: 10.1080/10408436.2017.1320648.

Composition et resistance à la corrosion

Interreg	\odot
France-Wallonie-Vlaanderen	UNION EUROPÉENNE EUROPESE UNIE

Alt Ctrl Trans

Propriété Revêtement	Composition (% masse)	Première trace de corrosion en brouillard salin (h)
Chrome dur (épais)		150
Chrome dur (mince)		24
ENB-Pb	93.5 Ni; 5.5 B 1 Pb	24
ENB	96 Ni; 4 B	48
ENB HT	96 Ni; 4 B	12
NiW électrolytique	60 Ni 40 W	1000
FeW électrolytique	65 Ni 35 Fe	2
Projection thermique (4)	Variable selon le procédé	24-360
Dépôt plasma de stellite	Co 28; Cr 28 Mo 5.5; Fe 1 C 0.25	
Dépôt plasma de chrome	Cr	

Quelle alternative disponible pour quelle propriété visée ?

Procédé Propriétés	Nickel- bore chimique	Nickel électrolytique	Plasma d'arc transféré	Chrome trivalent	Oxydation micro arcs	Dépôts en phase vapeur (PVD/CVD)	Projection thermique (HVOF)
Résistance à l'usure élevée	✓		✓		✓	✓	✓
Résistance à la corrosion élevée		✓			✓	✓	✓
Dureté élevée	✓		✓		✓	✓	✓
Réduction de la friction	✓	✓					
Couche épaisse possible		✓	✓		✓		✓
Lubrification améliorée	✓						
Réparation des surfaces endommagées			✓				✓
Revêtement homogène	✓		✓		✓	✓	
TRL	✓	✓	✓	✓	✓	✓	✓

PROGRAMME DE COOPÉRATION TRANSFRONTALIÈRE

GRENSOVERSCHRIJDEND SAMENWERKINKSPROGRAMMA

Alt Ctrl Trans

Merci pour votre attention Thank you for your attention

veronique.vitry@umons.ac.be

