Surface hardening by superficial heat treatments or diffusion treatments

Prof. Fabienne Delaunois

08 juin 2021
Heat treatments for carbon steels

General heat treatments
- Austenisation
- Annealing
- Normalization
- Quenching
- Tempering
- Isotherm decompositions

Thermochemical treatments
- Non-metals diffusion
 - Carburizing
 - Nitriding
 - Carbonitriding
- Diffusion treatments
 - Chromization
 - Calorization
 - Sherardization

Superficial heat treatments
- Induction hardening
- Flame hardening
- High energies
 - Laser
 - Electron beam
 - Arc Plasma

To enhance surface hardening
Superficial heat treatments

Goal
- Hard martensite on part surface
- No modification of steel chemical composition

For steel containing wt.% C > 0.3
- 0.4 to 0.6 wt.% C

Heat treatments
1. **Fast heating**
 - To avoid diffusion
 - Above $A_{c3} + 25-50^\circ C \rightarrow$ austenisation
2. **Quick cooling**
 - Water or oil quenching to obtain martensite
Superficial heat treatments

- Fast heating

Medium or high frequency **induction** heating

- Most common method
- Heating from a few 0.1 to a few mm deep
- Heating by Joule effect and thermal conduction

Heating with **flame**

- Very fast heating of the surface above Ac3 (a few seconds)
- Hardened depth between 1 mm and the full section of the part (up to 75 mm)

Immersion in a bath of **molten salts** (1000-1200°C)

- More rarely used
- For gear teeth
Superficial heat treatments

- Induction heating

Advantages

- Short heating times, fast and economical processing
- Localized hardening
- Depth of heating controlled by frequency of the alternating current, power input, time, part coupling and quench delay
- Good wear resistance of hardened surfaces (due to high hardness)
- Fatigue resistance due to compressive surface stresses
- No decarburization or oxidation
- Low structural deformations because part core remains cold
- Core retains its initial mechanical characteristics
- Easy to automate
- Non-polluting

Disadvantages

- High economic investment
- Need of a well shape design of the inductor to ensure correct distribution of the induced currents
- For a limited number of steel grades
- Need of a careful control of temperature and thermal gradients
Superficial heat treatments

• Applications

Improved properties

• Wear resistance by friction, by matting, by rolling
• Fatigue resistance by total or localized reinforcement at stress concentrations

Areas

• Automotive, railway, mechanical engineering, agricultural construction, public works, machine tools, steel industry, ...

Examples

• Axes, pistons, transmission shafts, road shafts, cylinders, slides, rollers, pulleys, tappets, crankshafts, cams, camshafts, rocker arms, transmission joints, ball joints, cutting tools, chain links, ...
Heat treatments for carbon steels

General heat treatments
- Austenisation
- Annealing
- Normalization
- Quenching
- Tempering
- Isotherm decompositions

Superficial heat treatments
- Thermochemical treatments
 - Non-metals diffusion treatments
 - Carburizing
 - Diffusion treatments
 - Chromization
 - Nitriding
 - Calorization
 - Carbonitriding
 - Sherardization
- Superficial heat treatments
 - Induction hardening
 - Flame hardening
 - High energies
 - Laser
 - Electron beam
 - Arc Plasma

To enhance surface hardening
Thermochemical treatments

Based on the diffusion of chemical elements

- Non-metals : C, N \rightarrow to enhance mechanical properties
- Metals : Cr, Al, Zn, Si \rightarrow to enhance corrosion resistance

3 major treatments to enhance mechanical properties

1. Carburizing: diffusion of carbon (C)
2. Nitriding: diffusion of nitrogen (N)
3. Carbonitriding or nitrocarburizing: diffusion of C and N

2 hardening mechanisms

1. By quenching (carburizing, carbonitriding)
2. By precipitation, by solid solution effects and by chemical combination between substrate and diffusing element (nitriding, nitrocarburizing)
Thermochemical treatments

<table>
<thead>
<tr>
<th>Active medium or diffusion medium used</th>
<th>Carburizing</th>
<th>Nitriding</th>
<th>Carbonitriding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid = pack (coal, coke, graphite, etc.)</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid = baths of molten cyanide salts</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Gaseous = gas mixture rich in C and/or N (CO or hydrocarbons of the C_nH_m type, ammoniac NH$_3$)</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Plasma = ionic</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Low pression or vacuum = rarefied atmosphere</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thermochemical treatments

<table>
<thead>
<tr>
<th>Carburizing</th>
<th>Nitriding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffusion of C in solid solution of insertion in Fe</td>
<td>Diffusion of N in solid solution of insertion in Fe</td>
</tr>
<tr>
<td>[2CO \rightarrow CO_2 + C_{at}]</td>
<td>[2NH_3 \rightarrow 3H_2 + 2N_{at}]</td>
</tr>
<tr>
<td>1. Heating at 815-980°C to obtain (\gamma) phase</td>
<td>1. Heating at about 500-550°C to obtain (\alpha) phase</td>
</tr>
<tr>
<td>2. Diffusion of C to obtain 0.7-0.9 wt.% C in surface</td>
<td>2. Diffusion of N</td>
</tr>
<tr>
<td>3. Water or oil quenching</td>
<td></td>
</tr>
<tr>
<td>4. Tempering (550°C-1 h)</td>
<td></td>
</tr>
<tr>
<td>Diffusion time: about 30 min</td>
<td>Duration: fct(t° of HT): 50-100 h</td>
</tr>
<tr>
<td>Hardening by martensite formation</td>
<td>Hardening by superposition of two layers (from the surface)</td>
</tr>
<tr>
<td>• Level of hardening depending on the carbon content of the martensite (800-850HV)</td>
<td>1. Thin compound layer made of Fe(4)N ((\gamma')) and Fe({2-3})N ((\varepsilon)) nitrides = “white layer” ((\leq 30 \mu m))</td>
</tr>
<tr>
<td>• Hardened thickness between 0.2 to 2 (or more) mm depending on the application</td>
<td>2. Diffusion layer (0.1 to 1 mm): nitride-reinforced surface layer nitride precipitates of iron and of alloying elements + solid solution hardening</td>
</tr>
</tbody>
</table>
Thermochemical treatments

<table>
<thead>
<tr>
<th>Carburizing</th>
<th>Nitriding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other properties</td>
<td>Other properties</td>
</tr>
<tr>
<td>• High wear resistance</td>
<td>• Minimum distortion and excellent dimensional control</td>
</tr>
<tr>
<td>• Improved fatigue resistance due to compressive stresses on the surface</td>
<td>• High wear resistance</td>
</tr>
<tr>
<td>• High fatigue resistance in flexion and in torsion due to compressive</td>
<td>• High fatigue resistance</td>
</tr>
<tr>
<td>stresses on the surface</td>
<td>due to compressive stresses on the surface</td>
</tr>
<tr>
<td>• High resistance to seizing, adhesive bonding, wear due to small movements</td>
<td>• High resistance to seizing, adhesive bonding, wear due to small movements because of the</td>
</tr>
<tr>
<td>due to the presence of the compound layer (made of nitrides that are</td>
<td>presence of the compound layer (made of nitrides that are auto lubricious)</td>
</tr>
<tr>
<td>auto lubricious)</td>
<td>• Very high hot resistance</td>
</tr>
</tbody>
</table>

For mild steel with an initial carbon content < 0.25 wt.% For specific grades: mechanical engineering steels (medium-carbon (quenched and tempered) steels), tool steels, stainless steels, sintered steels
• Alloyed with elements that easily form nitrides (Cr, V, Al)
Thermochemical treatments

<table>
<thead>
<tr>
<th>Carbonitriding</th>
<th>Nitrocarburizing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffusion of C and N in solid solution of insertion in Fe</td>
<td>Diffusion of C and N in solid solution of insertion in Fe</td>
</tr>
<tr>
<td>$2CO \Rightarrow CO_2 + C_{at}$</td>
<td>$2NH_3 \Rightarrow 3H_2 + 2N_{at}$</td>
</tr>
<tr>
<td>1. Heating at 760-870°C to obtain γ phase</td>
<td>2 types of nitrocarburizing depending on the heat-treatment t°</td>
</tr>
<tr>
<td>2. Water or oil quenching</td>
<td>1. ferritic</td>
</tr>
<tr>
<td>3. Tempering</td>
<td>2. austenitic</td>
</tr>
<tr>
<td>Diffusion time: 30 min to few hours</td>
<td>Higher levels of N with a compound layer</td>
</tr>
<tr>
<td>• Hardening by martensite formation</td>
<td></td>
</tr>
<tr>
<td>• In some cases: hardening by nitride formation</td>
<td></td>
</tr>
<tr>
<td>• Austenite may be retained after quenching</td>
<td></td>
</tr>
<tr>
<td>• N enhances hardenability and case hardness but inhibits the diffusion of C</td>
<td></td>
</tr>
<tr>
<td>\Rightarrow Surface hardness equivalent to that of high-alloy carburized</td>
<td></td>
</tr>
<tr>
<td>steel without the need for drastic quenching</td>
<td></td>
</tr>
<tr>
<td>For low-carbon steels and stainless steels</td>
<td>For plain carbon steels</td>
</tr>
</tbody>
</table>
Carburizing

Steel containing 0.07 wt.% C and 2.3 wt.% Mn, treated at 950°C

Complete microstructure (from the surface to the core)

Martensite in surface

Very fine perlite/bainite in the core
Nitriding

- Compound layer (nitrides)
- Diffusion layer

Nital etching
Microscopic observation

Graph showing hardness (HRC) and depth below surface (mm) for nitriding steel, alloy steel, and stainless steel.
Case depth

Depth of diffusion

\[\text{Case depth} = K \times \sqrt{\text{Time}} \]

K = diffusivity constant depending on temperature, chemical composition of the steel, concentration gradients of the hardening element

- K increases exponentially as a function of absolute temperature
- Concentration gradients depend on the surface kinetics and reactions of a particular process

Diffusion substrates
Carburizing or nitriding hardening depth

- Case depth allows to control the efficiency of the surface heat treatment
- 2 parameters
 - Total case depth
 - Effective case depth ➞ most interesting

![Diagram showing Carburizing and Nitriding](image-url)
Carburizing or nitriding hardening depth

- Thickness depending on
 - Duration of the hardening treatment
Carburizing or nitriding hardening depth

- Thickness depending on
 - Duration of the hardening treatment
 - Heat treatment temperature

![Carburizing graph](image1)

![Nitriding graph](image2)
Carburizing or nitriding hardening depth

- Thickness depending on
 - Duration of the hardening treatment
 - Heat treatment temperature
 - Chemical composition of the substrate because alloying elements are influencing the element diffusion rate

Nitriding
Carburizing or nitriding hardening depth

- Thickness depending on
 - Duration of the hardening treatment
 - Heat treatment temperature
 - Chemical composition of the substrate because alloying elements are influencing the element diffusion rate
 - Composition of the atmosphere (carburizing or nitriding potential)

Heat treatments

- **Carburizing**
 - After diffusion treatment
 - Quenching + tempering
- **Nitriding**
 - Before diffusion treatment
 - Quenching + tempering
Applications

Valve spring seat rings in St4 (left: untreated, right: carbonitrided, after hardening and tempering)

Tapered roller bearing in 20NiCrMo7F after carburizing, hardening and tempering

16MnCr5 bevel gears after carburizing, hardening and tempering
Summary

- **Relative benefits for five common surface-hardening processes**

<table>
<thead>
<tr>
<th>Process</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical/tribological properties</td>
<td></td>
</tr>
<tr>
<td>Hardness</td>
<td>Wear-resistance</td>
</tr>
<tr>
<td>Induction hardening</td>
<td>Hard</td>
</tr>
<tr>
<td>Flame hardening</td>
<td>Hard</td>
</tr>
<tr>
<td>Carburizing</td>
<td>Hard</td>
</tr>
<tr>
<td>Nitriding</td>
<td>Hard</td>
</tr>
<tr>
<td>Carbo-nitriding</td>
<td>Hard</td>
</tr>
</tbody>
</table>
Thank you for your attention

Questions?