Surface hardening by superficial heat treatments or diffusion treatments 08 juin 2021 **Prof. Fabienne Delaunois** #### **Heat treatments for carbon steels** Superficial heat treatments General heat treatmen **Thermochemical** Austenisation **Superficial heat treatments** treatments High Non-metals Diffusion Induction Flame Annealing diffusion hardening hardening treatments energies Chro Carburizing Normalization Laser Electron Nitriding Quenching Calorization beam Carbonitriding Sherardization Arc Plasma **Tempering** Isotherm To enhance surface hardening decompositions #### Goal - Hard martensite on part surface - No modification of steel chemical composition #### For steel containing wt.% C > 0.3 • 0.4 to 0.6 wt.% C #### Heat treatments - 1. Fast heating - To avoid diffusion - Above A_{C3}+25-50°C → austenisation - 2. Quick cooling - Water or oil quenching to obtain martensite Fast heating ### Medium or high frequency induction heating - Most common method - Heating from a few 0.1 to a few mm deep - Heating by Joule effect and thermal conduction ### Heating with flame - Very fast heating of the surface above Ac3 (a few seconds) - Hardened depth between 1 mm and the full section of the part (up to 75 mm) ### Immersion in a bath of molten salts (1000-1200°C) - More rarely used - For gear teeth Induction heating #### Advantages - Short heating times, fast and economical processing - Localized hardening - Depth of heating controlled by frequency of the alternating current, power input, time, part coupling and quench delay - Good wear resistance of hardened surfaces (due to high hardness) - Fatigue resistance due to compressive surface stresses - No decarburization or oxidation - Low structural deformations because part core remains cold - Core retains its initial mechanical characteristics - Easy to automate - Non-polluting #### Disadvantages - High economic investment - Need of a well shape design of the inductor to ensure correct distribution of the induced currents - For a limited number of steel grades - Need of a careful control of temperature and thermal gradients Applications ### Improved properties - Wear resistance by friction, by matting, by rolling - Fatigue resistance by total or localized reinforcement at stress concentrations #### Areas • Automotive, railway, mechanical engineering, agricultural construction, public works, machine tools, steel industry, ... ### **Examples** Axes, pistons, transmission shafts, road shafts, cylinders, slides, rollers, pulleys, tappets, crankshafts, cams, camshafts, rocker arms, transmission joints, ball joints, cutting tools, chain links, ... #### Based on the diffusion of chemical elements - Non-metals : C, N → to enhance mechanical properties - Metals : Cr, Al, Zn, Si → to enhance corrosion resistance #### 3 major treatments to enhance <u>mechanical properties</u> - 1. Carburizing: diffusion of carbon (C) - 2. Nitriding: diffusion of nitrogen (N) - 3. Carbonitriding or nitrocarburizing: diffusion of C and N #### 2 <u>hardening</u> mechanisms - 1.By quenching (carburizing, carbonitriding) - 2.By precipitation, by solid solution effects and by chemical combination between substrate and diffusing element (nitriding, nitrocarburizing) | Active medium or diffusion medium used | Carburizing | Nitriding | Carbonitriding | |--|-------------|-------------------------|-------------------------| | Solid = pack (coal, coke, graphite, etc.) | | | | | Liquid = baths of molten cyanide salts | \square | | | | Gaseous = gas mixture rich in C and/or N (CO or hydrocarbons of the C_nH_m type, ammoniac NH_3) | Ø | | | | Plasma = ionic | | $\overline{\checkmark}$ | | | Low pression or vacuum = rarefied atmosphere | Ø | | $\overline{\checkmark}$ | | Carburizing | Nitriding | | | | | |--|--|--|--|--|--| | Diffusion of C in solid solution of insertion in Fe | Diffusion of N in solid solution of insertion in Fe | | | | | | $2CO \Rightarrow CO_2 + C_{at}$ | $2NH_3 \Rightarrow 3H_2 + 2N_{at}$ | | | | | | Heating at 815-980°C to obtain γ phase Diffusion of C to obtain 0.7-0.9 wt.% C in surface Water or oil quenching Tempering (550°C-1 h) | Heating at about 500-550°C to obtain α phase Diffusion of N | | | | | | Diffusion time: about 30 min | Duration: fct(t° of HT): 50-100 h | | | | | | Hardening by martensite formation Level of hardening depending on the carbon content of the martensite (800-850HV) Hardened thickness between 0.2 to 2 (or more) mm depending on the application | Hardening by superposition of two layers (from the surface) 1. Thin compound layer made of Fe₄N (γ') and Fe₂₋₃N (ε) nitrides= "white layer" (≤30 μm) 2. Diffusion layer (0.1 to 1 mm): nitride-reinforced surface layer nitride precipitates of iron and of alloying elements + solid solution hardening | | | | | | Carburizing | Nitriding | | | | | | |--|---|--|--|--|--|--| | Other properties High wear resistance Improved fatigue resistance due to compressive stresses on the surface | Other properties Minimum distortion and excellent dimensional control High wear resistance High fatigue resistance in flexion and in torsion due to compressive stresses on the surface High resistance to seizing, adhesive bonding, wear due to small movements because of the presence of the compound layer (made of nitrides that are auto lubricious) Very high hot resistance | | | | | | | For mild steel with an initial carbon content < 0.25 wt.% | For specific grades: mechanical engineering steels (medium-carbon (quenched and tempered) steels), tool steels, stainless steels, sintered steels • Alloyed with elements that easily form nitrides (Cr, V, Al) | | | | | | | Carbonitriding | Nitrocarburizing | | | | | | | | |--|--|--|--|--|--|--|--|--| | Diffusion of C and N in solid solution of insertion in Fe | Diffusion of C and N in solid solution of insertion in Fe | | | | | | | | | $2CO \Rightarrow CO_2 + C_{at}$ $2NH_3 \Rightarrow 3H_2 + 2N_{at}$ | | | | | | | | | | Heating at 760-870°C to obtain γ phase Water or oil quenching Tempering | 2 types of nitrocarburizing depending on the heat-treatment t°1. ferritic2. austenitic | | | | | | | | | Diffusion time: 30 min to few hours | | | | | | | | | | Hardening by martensite formation In some cases: hardening by nitride formation Austenite may be retained after quenching | Higher levels of N with a compound layer | | | | | | | | | N enhances hardenability and case hardness
but inhibits the diffusion of C → Surface
hardness equivalent to that of high-alloy
carburized steel without the need for drastic
quenching | | | | | | | | | | For low-carbon steels and stainless steels | For plain carbon steels | | | | | | | | ### Carburizing Steel containing 0.07 wt.% C and 2.3 wt.% Mn, treated at 950°C Complete microstructure (from the surface to the core) Martensite in surface Very fine perlite/bainite in the core ### **Nitriding** ### Case depth Depth of diffusion Case depth = $$K \times \sqrt{Time}$$ K = diffusivity constant depending on temperature, chemical composition of the steel, concentration gradients of the hardening element - K increases exponentially as a function of absolute temperature - Concentration gradients depend on the surface kinetics and reactions of a particular process #### Diffusion substrates Carburizing **Nitriding** Carbonitriding Ferritic nitrocarbu -rizing Lowcarbon steels Alloyed steels Stainless steels Tools steels Nitriding steels Lowcarbon steels Stainless steels Lowcarbon steels - Case depth allows to control the efficiency of the surface heat treatment - 2 parameters - Total case depth - Effective case depth → most interesting - Thickness depending on - Duration of the hardening treatment - Thickness depending on - Duration of the hardening treatment - Heat treatment temperature - Thickness depending on - Duration of the hardening treatment - Heat treatment temperature - Chemical composition of the substrate because alloying elements are influencing the element diffusion rate - Thickness depending on - Duration of the hardening treatment - Heat treatment temperature - Chemical composition of the substrate because alloying elements are influencing the element diffusion rate - Composition of the atmosphere (carburizing or nitriding potential) #### Heat treatments - Carburizing - <u>After</u> diffusion treatment - Quenching + tempering - Nitriding - <u>Before</u> diffusion treatment - Quenching + tempering # **Applications** Valve spring seat rings in St4 (left: untreated, right: carbonitrided, after hardening and tempering) Tapered roller bearing in 20NiCrMo7F after carburizing, hardening and tempering 16MnCr5 bevel gears after carburizing, hardening and tempering ### Summary • Relative benefits for five common surface-hardening processes | | | | Benefits | | | | | | | | | | |---|---|------------------------|------------------------------------|-------------------------------------|---------------------------------|--------------------|--------------------------|--------------------|-----------------------|---------------------------------------|---------------------------------------|---------------------------------| | | | | Mechanical/tribological properties | | | | Cost | | Others | | | | | | Prod | Process | | Wear-
resistance | Capacity
for contact
load | Bending
fatigue | Resistance
to seizure | | Capital
investment | Freedom
from
quench
cracking | Possible
dimension-
nal control | Salt
corrosion
resistance | | | Superficial | Induction
hardening | Hard | High (deep
case
depths) | good | good | fair | low-cost | medium | | fair | | | | heat
treatments | Flame
hardening | Hard | High (deep
case
depths) | good | good | fair | low-cost | low | | fair | | | t | | Carburizing | Hard | High
(medium
case
depths) | excellent | good | good | low-to-
medium | high | excellent | fair | | | | Thermo-
chemical
heat
treatments | Nitriding | Hard | High
(shallow
case
depths) | fair | good | excellent | medium-
to-high | medium | good
(during
pretreat-
ment) | excellent | improved | | | | Carbo-
nitriding | Hard | High
(shallow
case
depths) | fair | good | good | low-cost | medium | excellent | good | improved | ## Thank you for your attention # Questions?