

20 years

Advanced

Equipment

24 Millions €

Strong network

285 Experts

200 Projects

THE TECHNOLOGICAL ACCELERATOR OF RESPONSIBLE INNOVATION IN MATERIALS AND PROCESSES

When innovation becomes valuable solutions

For turnkey support from design to industrialization

Our Services

Coating to modified materials

Deposition by magnetron sputtering

Substrate

Target

Voltage (DC, RF, etc.)

- Argon + other gas (N₂, O₂, CH₄...)
- 3 < working pressure < 20 mTorr

iAIN

Applications

TiN

Decoration, cutting tools, drill bits, etc.

TiCN

Argon + Reactive gas -

-

Hybrid Coating MeC/CH Chemistry adapted to application

UWC/C:H by a PVD/PECVD hybrid process: W reactive sputtering in Ar/C₂H₂

□ "Green": no solvent
□ Flexible process → compositions

Wilde range of mechanical and tribological properties

Jansson et al. Thin Solid Films, 536 (2013) 1

Hybrid Coating MeC/CH Chemistry adapted to application

□ WC/C:H coatings with various compositions can be synthesized

□ Nanocrystalline WC grains in a hydrogenated carbon matrix

Low friction coefficient, low wear rate combined to moderate hardness

Good alternative to Cr(VI) electroplating

On steel plates

Hybrid Coating MeC/CH Chemistry adapted to application

5 µm Hard Cr by electroplating

« medium [CH] » best properties better or like hard Cr Compromise between mechanical and tribological properties

High entropy alloys Chemistry adapted to application - new development

Classical alloys : 1 or 2 major elements + adding elements to improve some properties

High entropy alloys : Alloys with multi principal elements, \geq 5 equiatomic elements

Highly disordered structure

Theoretical knowledge of bulk alloys from 2004

He & Yang, Front. Mater. 5:42. 2018, 5,42

⇒ New approach with thin films

⇒ New or better surface properties PVD coating from target sputtering Less manufacturing and material cost Green technology

Hardness, wear at high temperature resistance, Corrosion resistance

High entropy alloys Chemistry adapted to application - new development

- 1 µm thin film
- HEA powders or commercial powders
- \Rightarrow quinary FeAIMnCrMo alloy
- Nanohardness : up to 8.5 GPa
- Goal hard Cr : ~ 10 GPa

 \Rightarrow HEA PVD thin films are an interesting alternative

Amorphous alloys Chemistry adapted to application – new development

- ✓ Coating on soft substrate
- ✓ Wear resistance
- ✓ High resistance against corrosion

Ion implantation to modified materials

Why Ion implantation (coating limitation)?

Ion implantation (principles)

Interphase and not interface

Ion implantation (modification)

Hardening effect or nano-screwing

Creation of dislocations

Precipitation of atoms

Decrease in grain size

Improvement of mechanical properties

Ion implantation (bulk metal)

- Increase in surface hardness
- Hardness is dose dependent
- Optimal dose could exist

17

- Implantation causes nitrogen precipitation
- Depth of implantation depends on acceleration / dose

Ion implantation (TiAl6V case)

Balls 100 Cr6, 6mm, 25 g, 1cm/s

Increase of the hardness after implantation

Reduction of wear for TiAl6V4

Implantation diffusion (bulk metal)

Implanted ions diffused at 330°C

- Nitrogen implantation in steel
- Greater implantation depth due to species diffusion
- Possibility to address a depth of 5 μ m in diffusion implantation mode
- Pay attention to the surface condition which can change

Implantation diffusion : example of a steel

- Treated thickness up to 5 microns
- Hardness profile up to 850HV on the surface (+150%)
- Following a degressive nitrogen concentration profile.
- Long range" effect up to 12 µm thickness
- Dislocation creation beyond the precipitation thickness

Applications onto coatings

Ion implantation (on electro-Coatings)

Densification and closure of coating pores

Ref

N2 2^E17 ions/cm2

Ion implantation (on PVD Coatings)

Implantation of columnar PVD layers (Molybdenum coating)

- Closure of pores and densification brought by the columnar growth
- Creation of a double structure dense on columnar
- Proven increase in surface hardness

Merci pour votre attention

Thomas.godfroid@materianova.be